
MAXIMUM-ENTROPY PROBABILITY

DISTRIBUTIONS FOR CONTINUOUS

RANDOM VARIATES

By

J.N. Kapor

11 TyKanpur

(Received : August, 1981)

Summary

Maximum-Entropy Probability Distributions (MEPD'S) are sought
to be obtained when the continuous random variate varies over the range
(—0D,oc) and the moments prescribed are (0 mean alone (;7) variance
alone (i/f) coeilicicnt cf variation alone (/i ) mean and mean deviation
about some fixed point (v) E In (1 + The MEPD'S are also obtained
for the range [0, <») when the mcments prcscribcd are : (;) mean m and
E 1x—m 1 (i/) mean m and E \ x—mo | (('//) E (In x) and E
In (1+.V-)) (iv) E (1" (1+ ^)')) (v) E On x) and (E {hixy (vi) E (x") and
E{1 n x){vii) variance alone. Finally tlic MEPD's are obtained for
the range [0,1] when the median or quartiles or quantiles are prescribed.

I. Introduction

Let X be a continuous random variate varying over the interval
[ a, b\ and let / (x) be its probability density function. Let the
values of k of its moments be prescribed so that

b

f{x)dx=\, fix) gr ix) dx=an r~\, 2,...,k ...(I)

In general, there will be an infinity of probability density
functions satisfying (1). If no other information is available about
f(x), according to Jayne's [5] Maximum-Entropy Principle, we
should choose that density function, out of all those satisfying (1),
which is 'least committed' to the unknown information, which is
'most-unbiased', which is 'most random', which is 'most uniform'
and which is 'most uncertain'. More precisely, wehave to choose.
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the density function f{x) which maximizes the informationalentropy

b

5=-j/W ...(2)
a

subject to (1) being satisfied. It is easily shown by using Euler-
Lagrange equation of calculus of variations that the Maximum-
Entropy Probability Density Function (MEPDF) is given by

f{x)=exp Si gk W ]> "-(S)

where the Lagrange multipliers are determined by
using (1).

It is obvious that the MEPDF depends on (1) the range of the
variate and {ii) the moments prescribed.

The following results are already available in the literature

TABLE I

Range Moments Prescribed MEPD References

( 00 J oo) E(x^) Normal [2,3,4.6
E(x),E{x') 9, 10,11, 2]

S>
B lx)=m. E (x—mY

J»
£(l.v|) Laplace [2,6]

E(\x-m\)

5>
£(l/i (1+x')) Cauchy [2]

[0, <»] E{x) Exponential [3,4,6, 11,12]

E(.x),E(.Utx) Gamma [2, 6,12]

E(.x)=m,E{x-my=a^ Truncated Normal

if a^<m'

Exponential if [1, 12, 14]

Does not exist

if

[0.1] No Moment Uniform [2,3,4,6,7,11,12]

Mean m Uniform if

Truncated Normal

>

[7]
otherwise.

E'\n x],ElUi(.l-x)] Beta [7, 9, 12]

E (x), E (^») Truncated Normal

or Truncated U or
uniform [7]
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The object of the present paper is to fill in the gaps in our existing
knowledge, to examine the existence and uniqueness of MEPD's
and to discuss the case when instead of moments, quantiles are
prescribed.

2. Mepd's When x Varies Form —oo to oo

When mean m and variance (or first and second order
moments about the origin) are both prescribed, the distribution v/ith
the maximum entropy is the normal distribution ^ (m o®) and its
entropy is \n{ V In e a]. We now discuss some related cases

(/) Ifmean alone is prescribed, then from (1) and (2)

f{x)=exp (-?^Q-Xi x), ...(4)

where exp(—Xq) exp (->ii a;) •••(5)

exp (- ^s) Xexp (—x) dx=m

Equations (5) do not determine Xo and Xi. As such, when mean
value is prescribed, the MEPD does not exist. To see the reason for
this, we note that the entropy for the normal distribution is indepe-
dent of m and it can be made as large as we like by making a
sufficiently large. [Thus even if we confine ourselves to normal
distributions with the given mean, we find that the entropy is unboun
ded and there is no distribution with a finite maximum entropy.
There is however a distribution with minimum entropy and this is the
degenerate normal distribution with given mean m and variance zero.
This is the Dirac delta function distribution which arises when the
value m is taken with probability unity and all other variate values

have probability zero.

The result can be generalised to show that if moments of first r
orders are prescribed, no MEPD exists if r is odd.

{a) If variance alone isprescribed, have to maximize
o

f{x)\nfix)dx _ ...(6)
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subject to

fix) dx^\, X^fix) dx—

Using Euler-Lagrange equation, we get

I + l«/Cr)4-(Xo—l)+^i 2 X xf(,x)dx]=0 ...(8)

xf(x) dx =0 .. (7)

Substituting -v / (x) dx=m, •••(9)

(8) gives /Cv)=exp [=Xo-Xi ] -..(10)

Using (7), (9) and (10), we get

1

V2-«j
exp

1 {x~mY
2

, -(11)

so that the MEPD is N {m, where m is arbitrary. Thus when
variance alone is prescribed, the MEPD is any normal distribution
with given variance <^2 but with any arbitrary mean m. Thus in this
case, the MEPD is not unique. The reason for this non-uniqueness
is obvious from the fact that the expression for the entropy of a
normal distribution is independent of m.

Goldman [3] sought to find the MEPD when the variance alone
is prescribed. However he found the MEPD when E (x^) alone is
prescribed.

(Hi) If coefficient of variation alone is prescribed as a, then the
constraint is

xV(^) dx-{l+a^)
)

Proceeding as before, we get

1

Xf (:>i:) dx

f(x)^
V It: am

exp

= 0

1 {x-mf
2 _

...(12)

•••(13)
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where mis arbitrary. The entropy of this can be made as large as we
please and as such no MEPD exists in this case. Aminimum
entropy probability distribution exists and is the Dirac delta function
distribution with zero mean and zero variance.

iiv) If mean and mean deviation about a fixed point are
prescribed, the MEPD is

/ e"" I I •••(14)

Kmean devotion about afixed point alone is prescribed, the MEPD
IS Laplace distribution. If both mean and mean deviation about
he mean are prescribed, the MEPDE is still the Laplace distribution.
It mean (m) and mean.deviation about the origin {<y) are prescribed,
we get '

o

0

+ A

0

dx

xe-"^-!^^ dx + A xe-'-^+>^^ dx=

0

•m

xe-'^-"^ dx-A xe-'^+i'^ dx=(T.

•••(15)

from vvhich we can attempt to determinee .4, Vand M. The MEPD
IS not the Laplace distribution

(v) If £• [In (1+^2)] is prescribed as c, we get

l-'=o<x<c<=

where

,2\j, dx—I, A
(I+x^)"

Tb(1+;c2)
(1+X^)» dx—c

...(16)

."(17)
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or

71/2 -/2

2A j cos '̂ ^9 <^0=1, —2^
0

cos^''"^^ \n cos^0 cld=c .--(IS)

Let

n/2 rzH

(cos^S)'»d6=f (m), then (cos^^)'" I«(cos''0)rf0==;/'' (773),•••(T9)

- . 0

so that

but

so that

or

/•(i-l) . /'W ,

2 r(,«+]) '

f'(m) P'Om+I) r'(m+lj^
fim) r(/J7+l) r (777+1/2)

r' ib) r'(z>-i/2)

r ib) r (6-1/2)

...(20)

...(21)

...(22)

...(23)

which (1^ (b) is digamraa function which is the derivative of the
logarithm of the gamma function. If 6=1, c=2 /« 2=1. 386264.
As c increases, i decreases. As c->o, 6->co, as c-5"O0,6->—2-

Tlius Cauchy distribution is the MEPD if £ (l?7(l+x®)) is
prescribed as 2 I?7 2. If [l«(I+x^)] is prescribed as some other
value between 0 and 00, the MEPD is the generalised Cauchy
distribution (16) where the exponent b is determined by theprescribed
value of a.

Figure 1 gives the relation between b and c., 1/ c<2 ln2,
b>I. The generalised Cauchy distribution can be more
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useful than the Cauchy distribution, since here moments of higher
order can exist if b is sufficiently large.

0.5 1.0

Fig. 1

3. Mepd's When The Random Variate Varies From O To oo
/

(i) If both arithmetic mean m and geometric mean g are
prescribed, it is well-known that the MEPDF is given by the gamma
density function

/U0= 0<j;<co

where

Y t'(y)
. , ln«,

so that In m—\n g=ln Y—^(y)

Khowiiig m aud g, we can find Yfrom (26) if w>^, and then fl can
be determined from (25).

(a) If the mean deviation about afixed point in,, is prescribed as
then the MEPDF is given by

f(x)=A I, x>0, ..,(27)
where

...(24)

•••(25)

...(26)

."(28),



98 Journal of the Indian society of agricultural statistics

Thus in this case, the iMEPD is truncated Laplace distribution (29)
where A and b are given by (29), b lies between (/Ho+cto)~i and (<^o)~^

A A> ^ A- >and A „— according as

We get the foliovving tables for A and b

TABLE II

'no

"o

.1 .25 , .5 1.0 2.0

1 .500 .454 .466 .481 .489

2 .302 .250 .250 .278. .229

3 .224 .185 .167 .158 .153

4 .180 .150 .154 •125.. .119>

5 •ISO .128 ,114 .706, .100

TABLE III

b

"'o

.1 .2 3 4 •J

1 .758 .825 .908 .958 .982

2 .398 .384 .3')3 .413 .434

3, .in .260 .256 .259 .266

4 .214 .200 .194 - .192 .193

5 .175 .163 .157 .154 .154

The mean of the MEPD is given by

CO

m—A xe~''\'-'^o\dx=mo

0

(l-ficrJ(l+fcmo)
b'̂ nio

...(3])

so that the mean of the MEPD is always greater than mo. This
is unlike the case of the MEPD over the range (-<»,>») where the
mean was same as
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{Hi) Tfboth the mean and the mean deviation abouf the mean
are prescribed, MEPDF is

...(32)

and here ai=o, unlike the situation over the range
Similarly if the mean deviation about the mean isprescribed, the
discussion is much mare complicated, illustrating the general
principle that in general, the discussion of MEPD over the range
[0,oo] is more difficult than over the range (—oo,oo). is
similar to the experience of Dowson and Wragg [1] and Wragg and
Dowson [14J.

O'O If E {hi (I+.v-')) is prescribed, the MEPD is unilateral
generalised Cauchy distribution.

(v) ]fE {In x) andE (In (!+:¥)) areprescribed as a and b res
pectively, then the MEPD is the beta distribution of the second kind
with

f{x)-
1 1-1a;'"

'55:5 1:

B{m,n) dm Bhn,n)=='¥{m+n)~'¥{n)

•••(33)

34)

35)

36)

Since T(a:) is a monotone increasing function of;c and a>o,
we find m>n and b>a. If m and n are integers.

I , 1 I I ' 1 ,_1 , 1
n n+\ m—\, n «+l

I

m+n—l
...(37)

Sincc T(a;) goes from -oo to co, it should bej possible to solve for
m and n from (34)- (36) when b>a.

(vi) ]f E(x") and E {In x) areprescribed, v/e get the MEPDF

f{x)-
n

• /c+l exp
.(38)
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If we put n=I, we get gamma distribution and if we put c=n—l,
we get Wcibull's distribution which is of great importance in
reliability iheory. Tribus [12] gave it as an example of a distribu
tion which cannot be deduced from the maximum-entropy
principle. The other example he gave vifas of Cauchy distribution.
We have seen that not only these can be derived, but these can be
generalised. Thus (38) is a generalised Wcibull's distribution. ]f

E(x»)=m'\ £(Id x) = ln g, ...(39)

we can find b and c by using

jn . (40)

For Weibull's distribution, c=«—I, so that

m"=b'\ In g=Iu b+l^ ni)=In (1).

so that In|-= - - (Q.547216), In^=_0.577216
o ft m n

Thus ifE(x") is prescribed as/n" and JS'Cln :*:) is prescribed as In g,
where g and m are related by (41), then the MEPD is the Weibull
distribution.

{vii) The discussion when mean and variance are prescribed

has been given by Wragg and Dowson [14]. From their discussion
the following additional results can be deduced.

(a) If.the variance alone is prescribed, the entropy is unbounded
and the MEPD does not exist. This result is quite different from

the corresponding result for the range (—°o,oo).

ib) Jf the coefficient of variation alone isprescribed and is less
than or equal to nnity, no MEPD exists.

{c) If the second moment about afixed point nio is prescribed
asffo, the MEPD exists and is a truncated normal distribution. For
this distribution, the mean will always be greater than nio and the
variance will always be less than <^^_In the particular case when
/?j<,=0, mean comes out to be %V2n and variance comes out to be
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iyiii) If both E{ln x) and E{In xf are prescribed, ths MEPD
is lognorraal distribution given by

(In x-inf , 0<x<oo ...(42)

[ix) Ifgeometric mean ahne isprescribed as g, then the MEPD
is the Pareto distribution given by

/(:c)=([A-l) c^-^x-*-, [A,=:H-[In glc]'̂ , x^c .-.(43)

4. Mepd's Over A Finite Interval [0,1] when Quantiles are
Prescribed

(0 If the mediant isprescribed as a, then MEPDF is discrete
and is given by

I
, a<x<l

2(1-fl)

This would be continuous if and only if a= 1/2 and then the
MEPD is the uniform distribution. If a¥'li2, we can approximate
the MEPD by a continuous distribution having entropy k times
the maximum entropy where k can be made as near to unity
as we like.

(«) If the three quartiles are prescribed as Qi, Qs, Qs, the
MEPD is again discrete and is given by

fix)=^^0<,x<Qx
1

4(0a-e:)

1

"4(63-62)

1

, 6i<x<62

, Q2<x<Qz

, 63<X<1
4(1-63)

so that theMEPDF is uniform in each of the four intervals (0,61).
(61. 62), (62, &), (Qs, 1). This can again be approximated by a
continuous density function having entropy as close to maximum
entropy as we like.

...(44)

•••(45)
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iiii) Similarly//O/—!) quaniiles are prescribed Qi, O2 ,
Qn-i, (he MEFDF is uniform over the nintervals (O. Oi) (Q^, 0.)
(g,, 1, 1) and we can approximate it by a continuous distribution
having enfropy as near to the maximum entropy as we like.

5. TabLe 0;= New Results Obtained in This Paper

TABLE IV

Range (-«.,=») Rangc(0,

Moment Prescribed MEPD Moments Prescribed MEPD

Mean

'/ariancc

CoefBcienl of

variation

E(x) and
E{ I x~m I )

Does not exist E-CIa—mj) Truncated Lap
lace with mean mo

Normal with arbi- E{x)=in, Eil- '̂—m Modified turnca-
trary mean ted Laplacc

Does not exist £(In(I +.v'))

£([n(l +.v'))

EOn x) Pa ret o

fl] Dowson D.C. and
Wragg A. (1961)

[2] Gokhale D.V.
(1978)

[3] Goldman S, (!955)

[4] Guiasu S. (1977)

[5J Jaynes E.T, (1957)

Unilateral Gene-

ralied Cliauchy

Modified Lapk;ce £-(In x), fdnd +.v)"> Beta distribution
E(x"): E([n x) of sccond kind

Generalised Wei-
biill

^ Generalised Cauchy £(In-r), £(In A-)" LogNormal

Range (c,®) Range (0.1)

Median, quartiles Union of discrete

uniform density
functions
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