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SUMMARY

Maximum-~Entropy Probability Distributions (MEPD’S) are sought
to be obtained when the continuous random variate varies over the range
(—w,) and the moments prescribed are (/) mean alone (ii) variance
alone (iii) coefficient cf variation alone (/) mearn and mean deviation
about some fixed point (v) E In (1+x%). The MEPD’S are also obtained
for the range [0, ) when the mcments prescribed are : (/) mean m and
E|x—m| (i) mean m apd E|x—mo| (ii) E(n x) and E
In(14+x) Gv) E (In (1+x)%) () E (n x) and (E (Inx)® (vi) E (x™) and
E (I n x) (vii) variance alore. Finally the MEFD’s are obtained .for
the range [0, 1] when the median or guartiles or quantiles are prescribed,

I. INTRODUCTION
Let x be a continuous random variate varying over the interval

[ @ 6] and let f (x) be its probability density function. Let the
values of k of its moments be prescribed so that

b b
ff(x) d x=1, S F@ & @ dv=a, r=1,2f (D)

In general, there will be an infinity of probability density
functions satisfying (1). If no other information is available about
f(x), according to Jayne’s [5] Maximum-Entropy Principle, we

should choose that density function, out of all those satisfying (1),

which is ‘least committed’ to the unknown information, which is
‘most-unbiased’, which is ‘most random’, which is ‘most uniform’

and which is ‘most uncertain’. More preeisely, we have to-choose. .
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the density function f (x) which maximizes the informational entropy
b
=— Jf(x) Inf (x) dx, (2)

a

subject to (1) being satisfied. It is easily shown by using Euler-
Lagrange equation of calculus of variations that the Maximum-
Entropy Probability Density Function (MEPDF) is given by

f(xX)=exp [—h—A g1 (*)---— 2 g (X) ], w.(3)
where the Lagrange multipliers 7.\0,7\1,7\2,...,7\,‘ are determined by
using (1).

It is obvious that the MEPDF depends on (1) the range of the
variate and (77) the moments prescribed.

The following results are already available in the literature

"TABLE I
Range Moments Prescribed ’ MEPD ‘ References
(cn , :n) E (xz) Normal [2, 3, 4,6
s E (x), E(x?) » 9, 10,11, 2]
v B (x)=m.E (x—m)? .
” E(lx]) Laplace ] [2, 6]
" E(|x—m}) ”
. E (In(1+x%) Cauchy 2]
[0, =] E(x) Exponential [3,4, 6,11, 12]
s E (x), E (1nx) Gamma [2,6,12]
» E (x)=m,E(x—m)*=c6*  Truncated Normal ’
if o?<m®
Exponential if [1,12, 14]
ol=m?
Does not exist
. if o?>m?
{0, 1 No Moment Uniform {2,3,4,6,7, 11, 12}
. Mean m Uniform if m=—:—lz—-,
Truncated Normal [7]
otherwise.
. " E1n x}, E [1n(1—x)] Beta (7,9, 12]
. E®x), E (x? Truncated Normal

or Truncated Uor
uniform [7]
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The object of the present paper is to fill in the gaps in our existing
knowledge, to examine the existence and uniquemess of MEPD’s
and to discuss the case when instead of moments, quantiles are
prescribed. '

2. MepD’s WHEN x VARIES FORM — o To o0

When mean m and variance o2 (or first and second order
moments about the origin) are both prescribed, the distribution with
the maximum ‘entropy is the normal distribution N (m o2 and its
entropy is 1 [/ 27n ¢ ¢]. We now discuss some related cases

(i) If mean alone is prescribed, then from (1) and (2)

fx)=exp (—R—n %), -(4)
where exp (—5\0) I exp (—2; x) dx¥1 -(5)

exp (—Ag) [ x exp (—M x) dx=m

Equations (5) do not determine 2, and A;. As such, when mean
value is prescribed, the MEPD does not exist. To see the reason for
this, we note that the entropy for the normal distribution is indepe-
dent of m and it can be made as large as we like by making o
sufficiently large. [Thus even if we confine ourselves to normal
distributions with the given mean, we find that the entropy is unboun-
ded and there is no distribution with a' finite maximum entropy.
There is however a distribution with minimum entropy and this is the
degenerate normal distribution with given mean m and variance zero.
This is the Dirac delta function distribution which arises when the
value m is taken with probability unity and all other variate values
have probability zero.

The result can be generalised to show that if moments of first r
orders are prescribed, no MEPD exists if r is odd.

(it) If variance alone is prescribed, then we have to maximize
4

‘"[ﬂﬂhﬂﬂﬁg. : o (6)
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subject fo

o

f £ dx==1, .[ 100 dx—[ T X f () "—"]2:0 e

—_®

Using Euler-Lagrange equation, we get
I+ 1nf(x)4-(p—1)+2 [x2—2 x J x f(x) dx]=0 e (8)

Substituting - S X f(x) dx=m, w(9)

—

(8) gives f(v) =exp [ 21 (x*=2mx) ] -(10)

Using (7), (9} and (10), we get
f(A)— === exp {: L M:} , -(I1)

so that the MEPD is N (m, 0®) where m is arbitrary. Thus when
variance alone is prescribed, the MEPD is aeny normal distribution
with given variance o2 but with any arbitrary mean m. Thus in this
case, the MEPD isnot unique. The reason for this non-uniqueness
is obvious from the fact that the expression for the entropy of a
normal distribution is independent of m.

Goldman [3] sought to find the MEPD when the variancealone
is prescribed. However he found the MEPD when E (x®) alone is
prescribed.

(iii) If coefficient of variation alone is pr escrtbed as a, then the
constraint is

@

Ixﬁf(x) dx—(1+a2)[ oj#f(x) dx ]2=o 12 7

-—_

Proceeding as before, we get *

f(x)— exp [ L (x m)z ...(13)

-)
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where m is arbitrary. The entropy of this can be made as large as we
please and as such no MEPD exists in this case. A minimum

entropy probability distribution exists and is the Dirac delta function
distribution with zero mean and zero variance, . :

(V) If mean and mean deviation about a fixed point are
prescribed, the MEPD is

F)=a,07 g 17=m1 . (14)

If mean deviation about a fixed point alone is prescribed, the MEPD
is Laplace distribution. If both mean and mean deviation about
the meanare prescribed, the MEPDE is still the Laplace distribution.

[f mean (m) and mean. deviation about the origin (o) are prescribed,
we get

™

= 8 a—p x| . ~rx—px
f(x) A, 4 , A[ e ) dx

o

0
+ A4 j NN dx=
- 0 . (15)
AJ. XeTPETEX gy 1 4 J.xe—””"" dx=m

—m

® 0
"4 I XeTrTRT x4 J.xe""”'““” dx=o0,
0

gl J

from which- we can attempt to determinee 4, v and &, The MEPD
is not the Laplace distribution '

(v) If E [1n (1-+x2)] is prescribed as ¢, we get

A
f(x)=\([+x2)” 5,—w<x<°° "'(16_)
where
I T Tn-(14-x2
J (Txp =14 Iﬁl"xq S e
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or _
nf2 =/2
24 S cos-”“e dﬁ——l 24 I cos2?™20 1n cos®0 df=c ...(18)
0 0
Let
/2 /2
S (cos)»dg=f (m), then K (cos0)™ 1n(cos*0)do=/" (m),...(19)
| .0 _ 0 ,
so that - _
=) f(m) _ '
6=~ fm)’ ; m=b—1 ..£20)
but
(12 T(m+1/2)
| f(m)=-— BNCEDI - (21)
g0 that
o= fm) _ IOt Cmt+1/2)
“fm)y L@+ L (m+1/2)
_ ) IMp-12)
“T®» [ 61 - (22)
. i _re '

which ¢ (3) is digamma function which is the derivative of the

logarithm of the gamma function. Ifb=1, c=2 In2=1. 386264.
As ¢ increz_ises, b decreases. As ¢c—o, b—>0, as c—>°0,b—>—12—.

Thus Cauchy distribution is the MEPD if E (1n(1+x?%)) is
prescribed as 2 In 2. If [1#(I+x"] is prescribed as some other
value between 0 and o, the MEPD is the generalised Cauchy
distribution (16) where the exponent b is determined by the prescribed

value of a.

Figure 1 gives the relation between b and c. 1f c<21n2,
b>1. The generahsed Cauchy distribution can be more




.
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useful than the Cauchy distribution, since here moments of higher
order can exist if b is sufficiently large.

C

e e o

oo = e ma m vwm e o e e et o o
'

Ce5 1,0 ’ . b

Fig. 1
3. MEpD’s WHEN THE RANDOM VARIATE VARIES FROM O To o
) , _
(@) If both arithinetic mean m and geometric mean g are

prescribed, it is well-known that the MEPDF is given by the ‘gamma
density function

fx)= _(7) 6T XYL K x < oo ...(24)
where

m=£-’ _In'g=%— Ina, | - (25)

so that In m—In g=In Yy—Y(y) ’ . ...(26)

Kaowiig m aud g, we can find Y from (26) if m>g, and then @ can
be determined from (25).

(i) If the mean deviation about a fixed pomt m, is prescrxbed as

S, then the MEPDF is given by
SX)=4 e 271 x>0, (27
where .
) 2(1 —bs,)

-1 _ b =2 —b6) (28)
A—2mo[ 14-bm,—bs,), ¢~ bm,= T+ b, — bo, .. (28)-
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Thus in this case, the MEPD is truncated Laplace distribution (29)
where A and b are given by (29), b lies between (ma—i—a,,) 1 and (o)

1
and A T according. as mo< o

We get thc. foln wwing tables for 4 and b

TABLE II

TABLE 111
. b '

The mean of the MEPD is given by

(1=b0,)(1+bmy,)
Bm,

‘m=Aj‘xe"’ [l dx=m,+ ) «(31)

so that the mcan of the MEPD is always greater than m,. This
is unlike the casc of the MEPD over the range (—oc,0) where the
mean was same as ni,. ‘ '
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(iii) If both the mean and the mean deviation about the mean
are prescribed, MEPDF is

f(x)er—az—b lz—-ml '__(32)

and here a#o, anlike the situation over the range (—oo,00),
Similarly if the mean deviation about the mean is prescribed, the
discussion is much mare complicated, illustrating the ‘general
principle that in general, the discussion of MEPD over the range
[0,00] is more difficult than over the range (—o0,00), This is
similar to the experience of Dowson and Wragg [1] and Wragg and
Dowson [14].

(v) If E{In (1+x2%) is prescribed, the MEPD is unilateral
generalised Cauchy distribution.

(v) If E (In x) and E (In (1+x)) are prescribed as @ and b res-
pectively, then the MEPD is the beta distribution of the second kind
with

xﬁ'l -1

e )_B(m 1) (14-x)men ' ~++(33)
1 0 )
B(m n) [am Bm,n)— mn B('”’”)]
=W(m)—¥(n) --(34)
~3 (”11 D am = B(m,n)=Y(m+n)—¥(n) ...(35)
b—a=Y(m+n)—-Y (n) .-.(36)

Since W(x) is a monotoné increasing function of x and a>o, b>a,
we find m>n and b>a. If m and #n are integers.
I, 1

p=1
H n+1+ +m—I _n+n+l+ S s—

= m+n I +(37)

Since ¥(x) goes from —ee to 0, it should be} possible to solve for
m and » from (34) — (36) when b>a

(vi) If E(x™) and E (In x) are prescribed, we get the MEPDF

n

f<x>=,7+zr’ic“i) o[ =(5) e +(38)
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If we put n=1, we get gamma distribution and if we put c=un—1,
we get Weibull’s distribution which is of great importance in
reliability theory. Tribus [12] gave it as an example of a distribu-
tion which cannot be deduced from the maximum-entropy
principle. The other example he gave was of Cauchy distribution.

We have seen that not only these can be derived, but these can be
generalised. Thus (38) is a generalised Weibull’s distribution. If

E(x*)=m", E(In x)=In g, (39

we can find b and ¢ by using

mP=b" +1’In g=In b—l—i ‘F(Eil—) . (40)
n - -
For Weibull’s distribution, c=n—1, 'so that
mr=1%, In g=In b+ ¥(1)=In b+%[" (1),

So that m=b, Ind-=—--(0.547216), In& = — L377216 (4
b n m n

Thus if E(x*) is prescribed as m® and E(In x) is prescribed as /n g,
where g and m are related by (41), then the MEPD is the Weibull
distribution.

(vii) The discussion when mean and variance are prescribed
has been given by Wragg and Dowson [14]. From their discussion
the following additional results can be deduced.

(@) If the variance alone is prescribed, the entropy is unbounded
and the MEPD does not exist. This result is quite different from
the corresponding result for the range (— 0,0).

(b) If the.coefficient of variation alone is prescribed and is less
than or equal to nnity, no MEPD exists.

(¢) If the second moment about a fixed point m, is prescribed
as 6,, the MEPD exists and is a truncated normal distribution. For
this dlStl‘lbllLlon, the mean will always be greater than m, and the
variance will alw.iys be less than ¢, In the particular case when
m,=0, mean comes out to be 0,,\/’777: and variance comes out to be
o2([—2/m),
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(viii) If both E(In x) and E(in x)* are prescribed, the MEPD
is lognormal distribution given by

f(x)__;vz_w [ (In x-m)] 0< X< 00 “.(42)

(ix) If geometric mean alone is prescribed as g, then the MEPD
is the Pareto distribution given by

Flx)=(n—1) c*-1x~*, p=1+[In gleI™, x>¢ ...(43)

4., MepD’s OVER A FruitE INTEKVAL [0,1] WHEN QUANTILES ARE
PRESCRIBED

(i) If the mediam is prescribed as a, then MEPDF is discrete
and is given by

f(x)——— 0<x<a | . ..(44)

N . <x<|]
T ol—ay ¢

This would be continuous if and only if a=1/2 and then the
MEPD is the uniform distribution. If a#1/2, we can approximate

the MEPD by a continuous distribution having entropy & times

the maximum entropy where & can be made as near to unity
as we like. ’

(if) If the three quartiles are prescribed as Qi Qo Qs, the
MEPD is again discrete and is given by

fO)=5" 0<x<Q1

4(Q= H0a— 0y B<¥< - (45)
l
~H0s—02)"

N
=ia=gey &<*<!

Q2<x<Q3

so that the MEPDEF is uniform in each of the four intervals (0,0
(01, 02), (@2, @3), (03, 1). This can again be approximated by a
continuous density function having entropy as close to maximum
entropy as we like.
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(i7i) Similarly if (1—1) quantiles are prescribed as 01, O,....... ,
Qy~1, the MEFDF is uniform over the # intervals (0. 01) (Q4, 0a),...

(Cn 1, 1) and we can approximate it by a continuocus distribution
baving entropy as near to the maximum entropy as we like.

5. TABLE OF NEw RESULTS OBTAINED IN THIS PAPER

TABLE 1V
Range (— = ) Range(0, =)
Moment Prescribed MEPD ° |Moments Prescribed - MEPD
Mean Docs not exist CE( x—mg |) Truncated Lap-
lace with meanm,
Variance Normal with arbi- E(x)=m, E(Jx—m Modified turnca-
trary mean ted Laplace
Coefficient of Docs not exist E(In(1 +x%) Unilateral Gene-
variation ralied Chauchy
E(x) and Modified Lapluce  E(In x), £(In(1 +x)} Beta distribution
E(lx—m|) o E(x™), E(In x) . of second kind
Generalised Wei-
_ bul{
E(In(1+x%) . Geaeralised Cauchy E(In x), E(In x)? 1.og Normal
Range (¢, =) Range (0.1)
E(In x) " Pareto Median, quartiles Union of discrete
' uniform density
functions
REFERENCES
[1} Dowson D.C. and : Maximum-Entropy Distributiop having prescri-
Wragg A. (1961) bed first and second order moments, 1EEE
Trans. 1T-19, 689-693,
[2] Gokhale D.V., ; Maximum Entropy characterisation of some
(1978) distributions. In  Statistical Distributions in

Scientific work Vol. 1M, edited by Patel, Golz
and Ord 299-304, MA Redial, Boston.

[31 Goldman S. (2‘955) ¢ Information Tleory, Prentice Hall, New York,

[4] Guiasu 5.(1977) t Information Witih Applications, McGraw Hill
New York.

{5] Jaynes E,T, (1957) : Information Theory and Statistical Mechanics,

Physical Review:106, 620-630, 108, 171-197,



MAXIMUM-ENTROPY PROBABILITY DISTRIBUTIONS 103

(6] Kagan A.M., Lenmik I.V. = Characterisation Problems in Muathematical

Rao C.R. (1973)
[7]. Kapor LN. (1982)

[8) Kapur J.N. (1¢84)

[9] Linsman J.H. and Van
Zaylen M.C. (1972),

[10] Rao C.R. (1974)
[11] Reza F.M., (1961)
[12} Tribus M, (1966) -

[13] Verdugo Lazo A.C.G.
and Rathie P.N. (1975)

[14] Wragg A. Dowson D.C.
(1970)

Statistics, Chapter X1, Wiley, New York.

: Maximum-Fntropy probability distribution fcr

a continuous random variate over a finile
interval, Jour. Math. Phys. Sci. 16, 97-109.

1 Maximum-Enfropy Models” m  Science and

Eugineer:ng, South Asia Publishers. New Delhi
(to appeat).

: Note on the generations of the most protable
frequency distributions Statistica, Nether-
landica, 26, 19-23.

: Linear Statistical Inference and Its Applications,

Wilcy Eastern. New Delhi.

. Introduction To Information Theory, McGraw

Hill, New York.

:“Rational Descriptions, Decisions and Designs,

‘Pergamon Press, Oxford.

: On the Entropy ‘of continuous probability

distribution, JEEE Trans. Inf. Theory IT 24,
120-123.

: Fitting continuous Probability. Density Func-

tions over (0, =) using Information Theory,
IEER Trans. IT-16,226-230.



